

WJEC (Eduqas) Chemistry A-level

SP OA4a - Synthesis of a Liquid Organic Product

Methods and images taken from the WJEC practical handbook

This work by PMT Education is licensed under CC BY-NC-ND 4.0

SP OA4a - Synthesis of a Liquid Organic Product

Aim

To **synthesise** 2-chloro-2-methylpropane using 2-methylpropan-2-ol and concentrated hydrochloric acid and **purify** the product using a **separating funnel** followed by **distillation**.

Apparatus and Chemicals

- Deionised water
- Access to 2 decimal place mass balance
- 100 cm³ round bottom flask
- 100 cm³ conical flask
- 100 cm³ conical flask with stopper
- 10 cm³ measuring cylinder
- 50 cm³ measuring cylinder
- 50 cm³ separating funnel
- Ice bath
- Reflux condenser
- Thermometer
- Sample vial
- Labels/suitable pen
- Anti-bumping granules
- Heating mantle / Bunsen burner with water bath
- Clamp stand
- Filter funnel with cotton wool
- (CH₃)₃COH (2-methylpropan-2-ol)
- Concentrated HCl solution
- Granular anhydrous CaCl₂
- Saturated NaHCO₃ solution
- Anhydrous MgSO₄ powder

Safety Considerations

- ★ (CH₃)₃COH flammable
- ★ concentrated HCl solution corrosive
- ★ CaCl₂ irritant

Method

- 1. Add 30 cm³ of concentrated HCl solution to a stoppered conical flask. This step should be performed in a **fume cupboard**.
- 2. Cool the HCl solution in the ice bath.
- 3. When the HCl solution has cooled add 2.5 g anhydrous CaCl₂ to the solution.
- 4. Add 10 cm³ of (CH₃)₃COH to the reaction mixture and mix thoroughly.
- 5. Remove the mixture from the ice bath and allow it to slowly warm up to room temperature. Note that a gaseous side product can be formed at this stage and so the stopper should be released periodically to alleviate any build-up of pressure.
- 6. Transfer the reaction mixture to the separating funnel.
- Stopper the funnel and invert it a few times to thoroughly mix the reaction mixture. You
 may need to alleviate the pressure in the funnel by holding it upside down and opening
 the tap.
- 8. Run off and discard the aqueous layer. If you are unsure which layer is the aqueous layer, add deionised water to the funnel and see which layer increases in volume.
- 9. Add 10 cm³ of saturated NaHCO₃ solution to the **organic layer** and mix thoroughly in the separating funnel. CO₂ gas is formed in this step so it is important to alleviate the pressure in the funnel periodically.
- 10. Run off and discard the aqueous layer.
- 11. Repeat steps 9 and 10 to wash the product for the second time.
- 12. Repeat steps 9 and 10 using 15 cm³ of deionised water to wash the product for a third time.
- 13. Transfer the organic product to a conical flask, add anhydrous MgSO₄ and swirl vigorously. Keep adding MgSO₄ until it no longer clumps together.
- 14. Transfer the organic product to the **round bottomed flask** through a filter funnel with a plug of cotton wool to remove the MgSO₄.
- 15. Set up the distillation apparatus.
- 16. Distil off the (CH₃)₃CCI (2-chloro-2-methylpropane) produced and collect in a clean, dry, pre-weighed 100 cm³ conical flask.
- 17. Record the temperature at which the liquid product is collected.
- 18. Calculate the mass of the product and use this information to calculate the product yield (Note that the density of $(CH_3)_3COH$ is 0.775 g cm⁻³)

